Isabelle Devol-Brown, Egidijus Urbonavičius , Elisabeth Tengborn, Mark Dowdall, Federico Rocchi, Olivier Isnard

THE FASTNET PROJECT FOR STRUCTURED AND FASTER RESPONSES TO NUCLEAR EMERGENCIES

MAIN FEEDBACK FROM THE FUKUSHIMA ACCIDENT

- communicate with our international partners, especially the Accident State, neighboring countries and the IAEA
- share technical information and expertise on the affected reactor
- assess atmospheric releases and their radiological consequences with fast and robust tools,
- develop common technical expertise approaches
- be prepared and organized at the national and international levels

FASTNET ID CARD

Background

Call H2020-EE-2014-2-RIA (NFRP-02-2014), Nugenia labelled (TA2)

Target

(European) Emergency Centres

Goal

Enable Emergency Centres to provide a fast, organized and reliable prediction of accident development and the anticipation of the atmospheric releases in order to better protect the population around most of European NPPs

Key outputs

- A reference database of severe accident scenarios
- A shared graduated methodology
- 2 improved tools needed for a rapid assessment of atmospheric releases

PARTNERSHIPS

This project, coordinated by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France) involves 20 partners and 1 third party for 48 months

A variety of stakeholders

- NSA
- Operators
- TSO
- Universities
- IAEA

From

- EU
- USA
- Canada
- Russian Federation

Participant No	Short name	Participant organisation name	Country	
1	IRSN	Institut de Radioprotection et de Sûreté Nucléaire	et de Sûreté Nucléaire France	
	IAEA	International Atomic Energy Agency	-	
2	Abmerit	ABmerit Slovak R		
3	Bel V	Bel V	Belgium	
4	CIEMAT	Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas	Spain	
5	DEMA	Danish Emergency Management Agency	Denmark	
6	EDF	Electricité De France Fran		
7	ENEA	Italian National agency for new technologies, Energy Italy and sustainable economic development		
8	RATEN	Institute for Nuclear Research	Romania	
9	BOKU	Institute of Safety and Risk Sciences - University of Natural Resources and Life Sciences	Austria	
10	JRC	Joint Research Center - European Commission -		
11	KIT	Karlsruhe Institut Technology Germany		
12	LEI	Lithuanian Energy Institute Lithuan		
13	LRC	Lloyd's Register Consulting Swede		
14	DSA	Norwegian Radiation Protection Authority	Norway	
15	NRI	UJV Rez, a. s. Czech Repu		
16	SSM	Strålsäkerhetsmyndigheten Sweder		
17	STUK	Radiation and Nuclear Safety Authority	Finland	
18	CNSC	Canadian Nuclear Safety Commission	Canada	
19	US-NRC	US Nuclear Regulatory Commission	USA	
20	SEC-NRS	Scientific and Engineering Centre for Nuclear and Russian Federa Radiation Safety		

Before the project

Reference codes (ASTEC, MELCOR, MAAP)

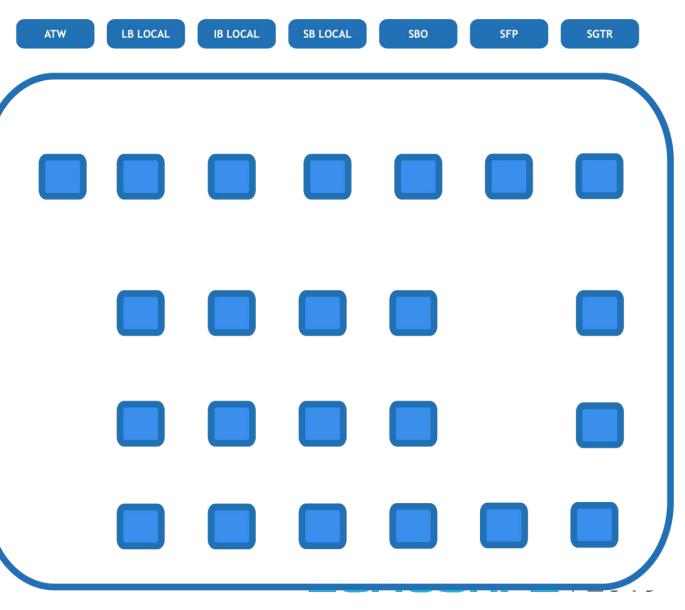
PERSAN, RASTEP 3D3P method

Experts from emergency preparedness and emergency response communities

After the project

A severe accident scenarios database with 108 descriptions of scenarios for 4 representative NPP designs (PWR, BWR, VVER and CANDU) and a generic concept of SFP

2 tools for a rapid assessment of atmospheric releases & a common graduated methodology extended to 5 NPP designs (PWR, EPR, BWR, VVER and CANDU)


A common language

ACCIDENT SCENARION DB

Senior Expert Group designed the scenarios

Development of existing method and tools based on 2 complementary approaches

Deterministic method and tool

3D3P method (graduated methodology, IRSN-EDF) **PERSAN** (fast ST evaluation tool, IRSN)

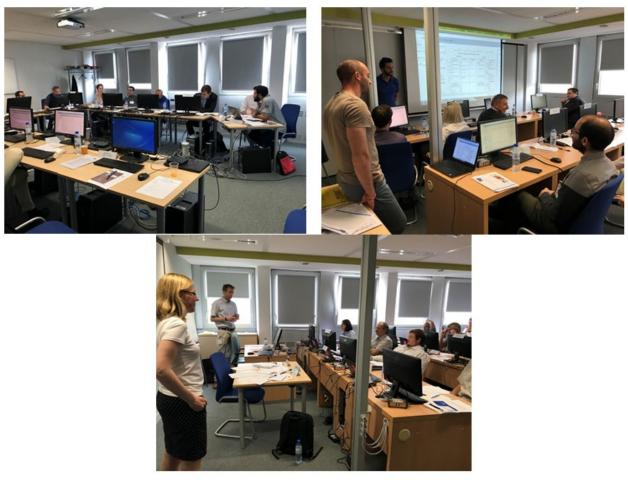
					_
tate of the safety barriers		State of the safety function assuring barrier		Safeguard systems monitoring safety	
Releases		integrity	function	h	
		DIAGNOSIS			
		PROGNOSIS			
ential State of the safety barriers		Potential State of the safety function assuring barrier integrity		Potential availability of Safeguard systems	+
Releases				monitoring safety function	


Common graduated methodology

PERSAN

Probabilistic tool

RASTEP (BBN diagnosis/prognosis tool based on L2-PSA inversion, SSM-LRC)


RASTEP

Extension to existing plants in Europe (PWR, EPR, BWR, VVER and CANDU)

Inclusion of functionalities to produce or integrate environmental releases data at a standard format (IRIX, IAEA) in order to link them with other initiatives focused on atmospheric transport, radiological consequence assessments and data assimilation

Training session organized in France, from May 28th to 30th, 2018, on developed method and tools (38 participants from 22 European or non-European countries)

EXERCISES

2 series of exercises

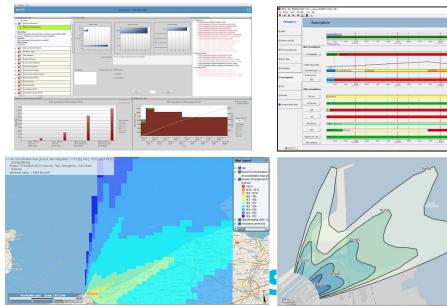
Benchmarking (December 2018)	Single day table top (February 2019)
Estimate source terms for a series of 4 accident scenarios (PWR, BWR, VVER, CANDU)	The accident is happening (PWR): analyse provided data and use the FASTNET tools and method in order to protect the population
A total of 22 partners participated 16 used PERSAN and 22 RASTEP	A total of 17 partners participated 5 used PERSAN and 8 RASTEP 6 used 3D3P method

Recommendations concerning the FASTNET tools and method and the partners' response during an exercise or a crisis were provided

EUROSAFE 2019

BENEFITS

From the Project itself


- Joint exercising
- Networking
- Cooperation
- Mutual trust and confidence

From Project results

- Shared approach and methodology
- Reliable, fast and efficient tools
- Database, as starting point

Improved level of common understanding of a worldwide community of partners

FOR THE FUTURE...

- Keep the momentum up!
- Diffuse the tools and the necessary knowledge;
- Enhance the source term database
- Further operational trainings, based on every technology and taking stock of the feedback and experience gained from the FASTNET exercises;
- More joint, real-time exercises, targeting the protection of population and with a higher level of reality (table-top or full-scale formats, scenarios based on every technology and provided by different partners...).

EUROSAFE

